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Abstract: This paper presents a systematic approach to perform spatial analysis with detailed indoor
building models for emergency service decision supports. To achieve a more realistic spatial applica-
tion, this research integrates three-dimensional (3D) indoor building models and their attributes to
simulate an emergency evacuation scenario. Indoor building models of a complicated train station
with different levels of detail are generated from two-dimensional (2D) floor plans and Building
Information Model (BIM) datasets. In addition to the 3D building models, spatial and non-spatial
attributes are also associated with the created building models and the objects within them. The
ant colony optimization (ACO) algorithm is modified to analyze the indoor building models for
emergency service decision support applications. The detailed indoor models and the proposed
spatial analysis algorithms are tested in simulated emergency evacuation scenarios to select the best
routes during emergency services. The experimental results demonstrate that the proposed system
is helpful for selecting the optimal route with the least cost at varying time stamps. Together with
the developed spatial analysis framework, they have a great potential for effective decision support
during emergency situations.

Keywords: 3D building models; indoor spatial analysis; emergency services; ant colony optimization

1. Introduction

As geospatial technology and infrastructure advance, and new types of spatial data
such as three-dimensional (3D) models become available, traditional two-dimensional (2D)
Geographic Information System (GIS) frameworks and applications have also gradually
adapted to 3D environments in recent decades [1,2]. This advancement offers a viable plat-
form for constructing a realistic environment to simulate and analyze sophisticated spatial
problems in conjunction with information and communications technologies (ICT), espe-
cially for city modeling [3,4]. Virtual 3D city models can not only represent geo-referenced
objects of a large urban area systematically [5] but also enable various human–environment
applications. For example, landscape management [6], determining escape routes inside
and outside of buildings [7], and accessing environmental equity of sunlight [8] can be
implemented using these types of 3D-GIS platforms. In a 3D GIS or city model platform,
the building model is one of the most important and attentive elements, as buildings are
the most ubiquitous objects in a real-world city. The Open Geospatial Consortium (OGC)
CityGML specification [9] defines four levels of detail (LOD) to describe building models
in different scales and accuracies depending on data sources and purposes. Viable methods
have been developed to create building models at different LODs, i.e., LOD0-LOD3. For
example, LOD1 and LOD2 building models can be produced using large-scale aerial pho-
tographs [10], while Light Detection and Ranging (LIDAR) point clouds and close-range
images can be used to generate LOD3 building models [11]. Because LOD0-LOD3 models
can have indoor and outdoor elements, the previous LOD-4 model is dropped and replaced
with indoor variables [9,12].
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In addition to the GIS or spatial perspective, Building Information Modeling (BIM) is
another popular approach for describing buildings in the construction and civil engineering
domain, with a focus on building model behaviors [13]. A common objective of BIM is to
facilitate effective management throughout the life cycle of building objects [14]. BIM uses
project-based approaches to construct building models instead of object-oriented building
models commonly adopted in the GIS domain. For example, the LOD in BIM describes
the level of “development” of a building during its life cycle, and the converting of the
LOD between CityGML and BIM is essential [15]. Therefore, BIM and GIS-based building
modeling systems can be considered interoperable and applications integrating BIM and
GIS will provide more comprehensive quantitative geospatial data and non-spatial building
attributes for better simulations and analyses [16,17].

An emerging topic in related fields is how to effectively utilize geospatial data and
systems to address public safety issues and support emergency services, especially in
complex environments. In a real-world emergency situation, the challenge is to reach the
most effective and timely decisions, especially when data and information are limited [18].
Conventional two-dimensional (2D) floor maps, which simplify 3D environments, may
not be able to provide adequate detailed semantic information. For example, Hamieh et al.
[19] projected specific elements extracted from the 3D environments onto 2D floor maps
and incorporated their BIM-based information for indoor path planning. Therefore, it may
be difficult for firefighters to carry out search-and-rescue missions using only 2D maps
and spatial information. Similarly, evacuations and route planning in complex compounds
and buildings may become a real challenge for both administrators and the public and
can potentially cause serious public safety issues for residents and passengers. To address
these issues, a few researchers have proposed and successfully demonstrated that 3D
spatial information can be very useful for navigation and emergency response in indoor
and outdoor environments [9,20–22], especially when combined with spatial analysis and
decision support systems.

Moreover, Macatulad and Biljecki [23] apply Big Data and geospatial artificial in-
telligence (GeoAI) solutions to large-scale 3D building models to provide a framework
for disaster management. GeoAI-based approaches, however, require a large amount
of training data such as hundreds of thousands of images to train a model beforehand.
Acquiring adequate training data for indoor scenes and developing a desirable model
remains challenging, and such procedures increase both time and monetary costs. Thus,
GeoAI-related methods may not be applicable to a limited amount of spatial data.

Although advanced decision support systems for emergency management using GIS
and ICT have been developed, additional information is still necessary, especially in 3D en-
vironments [24]. For instance, integrating RFID, LIDAR, or images with the BIM/IFC frame-
work for indoor navigation is highly beneficial for achieving precise localization [24–26].
Real-time communication between a server and a client may also be required to guide the
client in some emergency situations [27]. With 3D building models and information-based
attributes, the integration of GIS and optimization algorithms can enhance the effective-
ness and efficiency of route determination in emergency services applications, such as
evacuation or search-and-rescue decision support [28,29].

Digital city models and road networks have been successfully applied to solve best
route problems in transportation within the spatial optimization domain [30]. Several
algorithms have been developed, including genetic algorithm (GA) [31], particle swarm
optimization (PSO) [32], and artificial bee colony (ABC) algorithm [33–35], to address
global issues by using 2D maps, such as land-use allocation and texture classification.
Maboudi et al. [36] compare the capacity of several route-planning algorithms, and ant
colony optimization (ACO) [37,38] is considered having a great potential for solving routing
problems in complex environments [39]. ACO simulates the food-searching behavior of
ants and determines the optimal route from one node to another. This heuristic algorithm is
versatile, robust, and population-orientated, making it adaptable to variant conditions and
features. It has been customarily adopted and modified for path planning applications, such
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as solving the Traveling Salesman Problem [40–43], or for mobile robot path-finding [44].
In addition to globally solving optimal route problems, ACO can further explore the
path-finding procedure of each ant, enabling local searches and suboptimal investigations.

ACO has also been successfully applied to various routing-related problems, such
as multi-depot vehicle routing [45] and improving UAV paths when searching for lost or
trapped people in mountainous areas [46]. In a dynamic environment, ACO, when inte-
grated with local search operators, can achieve excellent performance [43]. For emergency
service decision support, Liu et al. [47] demonstrate the capability of combining GIS and
ACO on safety and emergency responses, and Tashakkori et al. [48] investigate the issues
of using ACO for 3D indoor search-and-rescue operations.

Because ACO uses pheromones as a medium for communication among ants, this
study further personifies ACO with human behavior when searching for the best route in
complex indoor environments. These environments are represented using OGC CityGML
interior building models with spatial and non-spatial attributes for emergency services.
The suboptimal investigation, which shows the entire route-searching procedure of each
ant, is also considered analogous to the behavior of a single person in a 3D environment. In
addition to the geometric distance between two nodes, a cost distance concept is proposed
to consider the non-geometric or non-spatial attributes in the developed route-searching
system. Simulations of passenger evacuation in a complex underground train station are
performed as test cases to validate the effectiveness of the developed algorithms for indoor
routing strategy support. The experimental results demonstrate the potential and feasibility
of integrating spatial geometry and information-based attributes in realistic spatial analysis
in 3D environments.

This study aims to perform spatial analysis with detailed indoor building models
and attributes for emergency evacuation decision support. Unlike conventional spatial
applications that primarily rely on geometric information, this research further incorporates
non-geometric attributes as environmental factors into the spatial application system. As a
result, spatial applications and analysis can be assessed by considering more real-world
elements. With such a virtual system, spatial simulations can be conducted before practical
implementations, providing an overview of the entire scenario and reducing unnecessary
costs. This research highlights three key aspects: (1) integrating spatial information and
non-geometric attributes into a single virtual 3D platform for easier visualization and
access, (2) enabling a more comprehensive understanding of the environment compared to
traditional 2D maps, and (3) simulating emergency evacuation by modeling and personi-
fying ant behaviors and digitizes environmental factors to mimic human’s reactions for
optimal route selection.

The rest of this paper is organized as follows. Section 2 describes the 3D modeling
of indoor environments. Section 3 presents the modified ACO algorithm and procedures.
Section 4 shows the experimental results and discussions. Finally, conclusions are drawn in
Section 5.

2. Three-Dimensional Modeling for Complex Indoor Environments

In recent years, BIM has become popular in architecture and construction for modeling
buildings and their elements. The most commonly used data format in BIM is the Industry
Foundation Classes (IFC 23) standard [49] developed by buildingSMART. On the other
hand, OGC CityGML is a popular schema for digital city modeling and can be easily
ingested into most 3D GIS systems. Both IFC and CityGML describe 3D building models
in object-oriented manners, but they have different class/object definitions due to their
different target users and usages [50]. In addition, different LODs in IFC and CityGML may
also consist of dissimilar contents and object types. Therefore, it may be useful to generate
a lookup table of common IFC and CityGML entities (as listed in Table 1) for converting
from one to the other.
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Table 1. Look-up table for common IFC and CityGML entities.

Type CityGML Entities IFC Entities CityGML LOD

Boundary
Surface

GroundSurface IfcSlab_FLOOR LOD 2–LOD 3, Indoor variables

RoofSurface IfcRoof, IfcSlab_ROOF LOD 2–LOD 3, Indoor variables

WallSurface IfcCurtainWall, IfcWall,
IfcWallStandardCase LOD 2–LOD 3, Indoor variables

OuterCeilingSurface IfcSlab_FLOOR LOD 3, Indoor variables

OuterFloorSurface IfcSlab_FLOOR LOD 3, Indoor variables

CeilingSurface IfcSlab_FLOOR Indoor variables

FloorSurface IfcSlab_FLOOR Indoor variables

InteriorWallSurface IfcCurtainWall, IfcWall,
IfcWallStandardCase Indoor variables

Opening
Element

Door IfcDoor LOD 3, Indoor variables

Window IfcWindow LOD 3, Indoor variables

Building
Element

BuildingFurniture IfcFurnishingElement Indoor variables

BuildingInstallation IfcBeam,
IfcBuildingElementProxy, LOD 3, Indoor variables

IfcChimney, IfcColumn,
IfcMember,

IntBuildingInstallation IfcPlate, IfcRamp,
IfcRampFlight, IfcRailing, Indoor variables

IfcSlab_LANDING, IfcStair,
IfcStairFlight

Attribute <StringAttribute> IfcAnnotation LOD 1–LOD 3, Indoor variables

Texture <_Texture> IfcCovering LOD 2–LOD 3, Indoor variables

The relationship between CityGML and IFC entities is not necessarily one-to-one.
For example, a gml::BuildingInstallation may come from IfcBeam, IfcColumn, or other IFC
entities. Therefore, the converted CityGML entity should store the source IFC entity as
a text annotation to retain the information as completely as possible. Similarly, when an
IFC entity can be mapped to multiple CityGML entities, the correct mapping should be
determined using geometric and other IFC attributes. For example, an IfcSlab can be a
floor or ceiling, but a converter may use the direction of the normal vector obtained from
IfcBuildingStorey to determine whether a slab should be converted to a ceiling or a floor
surface in CityGML.

In addition to entity conversion, another inter-operability issue between IFC and
CityGML is the coordinate system and model geometric representation transformation.
A BIM/IFC model is in a local coordinate system, whereas an OGC/CityGML model is
usually defined in the world coordinate system. To transform an IFC model to the world
coordinate system used in CityGML, an affine transformation consisting of a scale factor,
a rotation matrix and a displacement vector should be adequate. The transformation
from a IFC coordinate, [X, Y, Z], to a CityGML coordinate, [E, N, H], can be represented as
Equations (1) and (2), where S is the scale factor; R is the rotation matrix with a rotation
angle of κ, and [dE, dN , dH ] is the displacement vector.[

E
N

]
= S ∗ R(κ) ∗

[
X
Y

]
+

[
dE
dN

]
(1)

H = Z + dH (2)
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In CityGML, boundary representation (B-rep) is commonly used to describe 3D models,
so a solid body is represented by faces, edges, and vertices. Models represented using
B-rep can store detailed geometric and topological information about the objects. However,
most parametric IFC model objects are defined using swept solids and constructive solid
geometry (CSG) boolean operations. Converting an IFC model to CityGML requires
transforming swept solids to B-rep-based models. The process can be summarized in five
steps [51]: (1) extracting geometric information (local origin, swept area, depth, direction
etc.) from IFC objects; (2) calculating local coordinates of vertices; (3) transformation from
local to world coordinate system; (4) generating the GML object model; and (5) generating
geometric tables of vertices, edges, faces, and bodies. The nodes of objects can be extracted
from corresponding IFC entries (such as origin coordinates, sweeping path and directional
vector) and converted to the transformed coordinate system using Equation (3), x′

y′

z′

 = D ·

 Vx
Vy
Vz

+

 x
y
z

 (3)

where D is the sweeping path distance and
(
Vx, Vy, Vz

)
is the directional vector of sweeping.

Detailed explanations of the mentioned transformation steps can be found in the references
and are not repeated here.

Depending on the LOD, a BIM/IFC model can be very complex, comprising many
objects, which may result in a large CityGML model. It is often practically necessary to
simplify the converted CityGML model in order to improve the efficiency in subsequent
analyses. Figure 1 displays an indoor model and its simplified version. The original
indoor model consists of many minor structures that are not particularly crucial (at least
not for navigation or emergency services) but may reduce the computational efficiency of
subsequent analyses substantially. After simplification, the model is more concise but still
preserves essential geometric properties and attributes that are adequate for spatial analysis.

Figure 1. Simplification of an indoor model (left original; right: simplified).

For indoor navigation and emergency services, it is also useful to convert BIM/IFC
models into OGC/IndoorGML [52], as demonstrated in [21]. IndoorGML is a data model
based on GML 3.2.1 for indoor spatial information and is specifically designed for indoor
navigation applications. An IndoorGML model is composed of Core and Extension mod-
ules. The Core module stores the model’s geometry and topology as a Node-Relation
Graph (NRG) based on the structure space model framework, while different thematic data
and information are kept in Extension modules, such as the Navigation Module for indoor
network, routing, navigation, guidance, and related purposes [52,53].

There are three primary steps in converting a BIM/IFC model to OGC/IndoorGML.
The first step is the coordinate system transformation, which is identical to the transfor-
mation procedure described above for IFC to CityGML conversion. The second step is the
topology transformation, i.e., identifying and connecting the nodes of the indoor network.
The nodes are identified from relevant IFC entities, such as IfcSpace, IfcOpenElement and Ifc-
Corridor. Then, the nodes are connected by searching the adjacent space of opening objects
(e.g., doors) and the topological relationships, which can be extracted from corresponding
IfcRelSpaceBoundary entities. Finally, the indoor network nodes and connections (edges) are
exported using the IndoorGML schema to form a complete IndoorGML model. Table 2
summarizes the relationships between common IFC and IndoorGML entities of relevant
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element types. One thing to note is that after the conversion, it may be necessary to further
manually remove or edit faulty or unreasonable network nodes and connections in the
generated IndoorGML model to minimize biases and errors in subsequent analyses.

Table 2. Relationship between IFC and IndoorGML entities for indoor network modeling.

Module Element Type IndoorGML Entities IFC Entities

Core

Room, Elevator,
Staircase

State

IfcSpace

Door IfcOpeningElement,
IfcDoor

Window IfcOpeningElement,
IfcWindow

Horizontal route
Transition

IfcRelSpaceBoundary,
IfcSpace

Vertical route -

Navigation

NavigableSpace

AnchorSpace IfcDoor

ConnectionSpace IfcDoor

GeneralSpace IfcSpace

TransitionSpace IfcSpace

NonNavigableSpace NonNavigableSpace IfcWall,
IfcWallStandardCase., ..

NavigableBoundary
AnchorBoundary IfcDoor

ConnectionBoundary IfcDoor

NonNavigableBoundary NonNavigableBoundary IfcWall,
IfcWallStandardCase, ...

3. Ant Colony Optimization and Spatial Analysis

Ant colony optimization (ACO) in route searching imitates the behavior of natural ants
searching for food. In natural ant communication, pheromones play an important role and
artificial ant systems were proposed [37,54] to simulate ants’ behaviors. In general, in an
ACO system, artificial ants are considered to have memory in a time-discrete environment.
Take the case illustrated in Figure 2 as an example: at the beginning of a “best-route”
(shortest route) determination problem, when reaching an intersection (Node C or D), an
ant may randomly select either the left or right route. However, as time passes, more ants
may move toward the roads with shorter distances (CG and DG, which result in higher
“pheromone” density), thereby forming the shortest route network N1→C→G→N2, and
vice versa.

Because the pheromone trail intensity varies over time, two elements should be
considered in the route-searching system: the pheromone evaporation rate, ρ, and the
distance between two nodes. Taking a segment (CH) as an example, the trail intensity a
single ant leaves can be expressed by Equation (4) using a constant Q and the tour length of
the k-th ant, Lk, if the ant takes that segment. When other ants select the same segment, the
pheromone density accumulates as Equation (5) based on the number of ants (k = 1,. . . , m).
As a result, the pheromone intensity update function can be interpreted by the accumulated
pheromone with the evaporation rate as Equation (6) during a period of time (from t to
t + n).

△τk
CH = Q/Lk (4)

△τCH =
m

∑
k=1

△τk
CH (5)
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τCH(t + n) = ρπCH(t) +△τCH (6)

Figure 2. Artificial ant system example for the shortest route determination.

According to the trail update strategy [39], the pheromone concentration is developed
into a probability function for route selection, as described in Equation (7). In this equation,
a collection of nodes, allowedk, contains the candidate locations for an ant to move from one
node to another. The nodes that have been already used should be excluded from the list
as a node can be selected only once. A group of visibility factors, ηij, can then be generated
based on the distances from the current location to the next reachable candidates [38]. The
parameters α and β represent the relative importance of trail intensity and visibility in the
probability determination [45,47,55]. For the parameters, this study empirically sets the
pheromone evaporation rate (ρ) to 0.5, and the two hyperparameters α and β to 1 and 5,
respectively.

pk
ij(t) =


[τij(t)]

α
[ηij]

β
(EIs)

∑k∈allowedk
[τik(t)]

α [ηik ]
β j ∈ allowedk

0 otherwise
(7)

Most ACO-based emergency evacuation applications might focus only on random swap
and random insertion methods without incorporating the 3D models and attributes [34].
To better account for the complexity of the real-world indoor environment, this research
proposes an additional 3D environmental impact parameter, EI, based on quantitative 3D
information. The parameter is used to quantify the relative impact of spatial complexity in
the route selection process. For instance, a personified ant cannot penetrate a wall, but it can
open a door or a window to move from one node to another in a 3D indoor environment.
Accordingly, the environmental impact parameter of a door can be set relatively higher
than a wall when calculating the probability function for route selection. Figure 3 and
Table 3 illustrate an example of different information-based attributes that distinguish
different interior objects by the proposed EIs in a CityGML indoor building model. As
displayed and noted in the figure, the room is surrounded by brick walls with a door and
an air-tight window. The door is the easiest entrance and exit point of the room so it has
the highest EI of 1. The wall is usually difficult to break; therefore, the EI of the wall is
relatively low (0.3), while the EI of the window is somewhat in between (0.5). The values
of the environmental impact parameters are empirical and should be adapted according to
different circumstances.



Buildings 2024, 14, 2798 8 of 17

Figure 3. Environmental impact parameters of different building objects based on attributes.

Table 3. Indoor building elements and environmental impacts (EIs).

Element Wall Door Airtight Window

Thickness (m) 0.2 0.12 0.1
Height (m) 3.5 NA NA

Material concrete and brick wood and glass glass and metal
EI 0.3 1 0.7

Distance is an important factor when determining the pheromone density and the
probability of route selection in ACO. Instead of using the Euclidean distance between
nodes, this study utilizes the cost distance that takes information-based attributes into
account. The cost distance, Cd between two nodes is determined from its Euclidean distance,
d(P1, P2), with two attribute-dependent factors, Wa and Ca, as stated in Equation (8). The
attribute-dependent weighting factor, Wa, accounts for the relative effort required for
movement by different means. For example, in a subway station, an escalator may be built
alongside a stairway, as shown in Figure 4. The physical effort of taking the escalator or
climbing the stairway may be different for a passenger to move from one floor to another.
In this scenario, the effect of such non-spatial attributes (escalator or stairway) can be
realized using the weighting factor; however, if the escalator is turned off (not moving),
the weighting should be adjusted to be approximately identical to that of the stairway.
Similarly, if an event or obstruction (e.g., a locked door) blocks or hinders the traffic between
two nodes, a constant factor, Ca, is added to increase the cost of the distance.

Cd = d(P1, P2)Wa + Ca (8)

Figure 4. Example of attribute-dependent weighting factor for cost distance.
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Based on ACO and the proposed cost distance, a dynamic system is designed to
optimize the route selection. The system uses the traffic flow concept similar to [56,57] to
describe the effect of accumulated pheromone trails on the cost distance. This mechanism
controls the in-and-out volume [56] of each candidate route with full cost limitation (FCL)
and low-cost permission (LCP). Figure 5 illustrates the dynamic cost accumulation and
the route selections in the time-discrete system. This example displays an escalator (FCLE
and LCPE) as well as a stairway (FCLS and LCPS) for N-ants to decide the direction. At the
beginning (t = 0), the cost distance to select the escalator is smaller than the stairway, i.e.,
Cd(E) < Cd(S). The first ant goes through the escalator and adds additional costs to the
cost distance as Equation (9).

Cd(k) = d(P1, P2)Wa + Ca +
n

(Wa − 1)T
Cd(k−1) (9)

(a) t = 0 (b) t = n

(c) t = 2n (d) t = kn

Figure 5. Accumulated cost variations in ACO route decisions in a discrete-time system.

The dynamic cost used in this study consists of four elements to control the best-route
selection strategy. The number of ants (n) indicates the continuous entry into either the
escalator or the stairs. Normalizing (Wa − 1) with the maximum allowed number of ant
(T) prevents the dynamic cost from increasing too rapidly and exceeding the upper limit
too soon. The cost distance from the previous ant represented by Cd(k−1) leads to the
accumulation when an ant selects its path. For the first ant, this variation can be set as
Equation (8) to start the cumulative cost in Figure 5a. As more ants go through the escalator,
its accumulated cost increases, as displayed in Figure 5b. The FCL is the cumulative cost
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when the number of ants (n) equals the maximum allowed number of ants (T) and can
be calculated by Equation (10). When the accumulated cost of the escalator reaches FCLE,
the next ant turns to the stairway and adds its cost to this route, as illustrated in Figure 5c.
Simultaneously, the cost of the escalator starts to decrease by the same amount added to the
stairway, Rc, as described in Equation (11). In this mechanism, a damping factor g (where
0 ≤ g ≤ 1) is used to reduce the accumulated cost of the escalator. When the accumulated
cost of the stairway route reaches its upper limit (FCLs), a similar process begins, as shown
in Figure 5d. Therefore, load-balancing [39] both routes can control the costs and optimize
the dynamic route selection system as well as the in-and-out flow.

FCL = d(P1, P2)Wa + Ca +
p

∑
n=1

[
n

(Wa − 1)T
Cd(k−1)

]
(10)

Rc =
n

(Wa − 1)T
×

Cd(k−1))

FCLE
× g (11)

4. Experimental Results Analysis and Discussions

The described indoor modeling, ACO, and spatial analysis algorithms were imple-
mented and applied to a test case of dynamic emergency evacuation simulation in a complex
train and subway station (Taipei Main Station). The station is one of the largest in Taiwan,
with four rail systems converging here, including Taiwan Railways, Taiwan High-Speed
Rail, and two Taipei Metro subway lines. The main building of the station is seven stories
above ground and four stories underground. There are also several underground tunnels
and walkways connecting the station to nearby shopping complexes. The station serves
at least hundreds of thousands of passengers every day. Therefore, it is critical to have an
effective and efficient evacuation strategy during an emergency. The experiment carried
out in this study simulated directing passengers to move from an underground platform
floor to ground exits when there are multiple options, e.g., stairs and escalators, during an
emergency evacuation. In this example, 3D indoor building models, spatial and non-spatial
attributes, relative impacts of interior facilitates and environment, etc., were all taken into
account in the cost distance determination to distinguish the spatial complexities in the
route selection operation.

As shown in Figure 6a, the original building model of the study site was created in
BIM/IFC format and was converted to OGC/CityGML models with multiple levels of
detail, including a simplified indoor model as displayed in Figure 6b, and all necessary
attributes. In addition, an app with Augmented Reality (AR) functionality on the panoramic
model of the station, as illustrated in Figure 6c, was also created to be used on passengers’
mobile devices for visualization, indoor navigation and evacuation guidance based on the
model and ACO analyses in case of an emergency.

The creation of the OGC/CityGML model successfully demonstrates that the proposed
methodology is capable of handling real-world projects. Since the primary pathways
in Taipei Main Station are stairways and escalators, this study designs two simple test
scenarios shown in Figure 7 using only escalators and stairways to illustrate the dynamic
routing model for emergency evacuation and to validate the proposed approach. The
parameter settings of all EIs can be referred to Figure 4. The route-searching behavior of
an individual passenger can thus be simulated and investigated through the personified
ACO system. More sophisticated experiments could be built upon the work presented here
if necessary.

In the test case shown in Figure 7a, it is assumed that there are 200 ants (passengers) to
be evacuated (i.e., the number of ants is 200). At one of the IndoorGML nodes connecting
the underground level to the floor above, the passengers can choose to either go through
an escalator or a stairway next to it. Dynamic route selection in this experiment is based on
the cumulative cost of the escalator and the stairway. The environmental impact factors
included in the probability function as described previously are used to showcase the
passengers’ interactions in the cost accumulation mechanism. Table 4 lists the initial
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attribute-related weights and other parameters used for computing the cost distance,
including the FCL, LCP, and the number of allowed passengers. The constant Ca in
Equation (8) can be set to any value smaller than d(P1, P2). In this test case, this study
sets the constant to one-tenth of d(P1, P2) to simplify the computation. The exiting ratio
controlling factor (g) of both paths is set as 0.6 to implement the cost-depending evacuation.

(a) BIM/IFC Model

(b) Simplified OGC/CityGML LOD-4 Model (c) Screenshot of a panoramic model with AR
showing tourist location and service information

Figure 6. Three-dimensional models of Taipei Main Station.

(a) (b)

Figure 7. 3D visualization of passengers and route selection behaviors in an emergency scenario (a)
Two-route selections (b) Multiple-route selections.

Table 4. Initial cost settings of the ACO route selection.

Parameter Weight (W) Max. Ants g FCL LCP

Escalator 2.5 30 0.6 95 70
Stairway 3 40 0.6 90 63

Figure 8 illustrates the evacuation scenario described above, the cost distances, and
the accumulated costs of both routes with thresholds to control the in-and-out-flows. At
each time point, an ant (passenger) compares the costs of all available routes and selects the
one with the lowest cost. As shown in the figure, the initial cost distance of the escalator
route is lower than that of the stairway, so an ant goes upstairs by the escalator. As more
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ants move into the escalator, the accumulated cost increases until a later ant turns to the
stairway route. At this point, the accumulated cost of the stairway starts growing and
giving a cost reduction to the escalator according to the proposed mechanism. When the
accumulated cost reaches the FCL, the dynamic system prohibits entering this path, and
the next ant can only take the other route. Subsequently, the cost reduction mechanism is
applied to that path in the following time period until its accumulated costs are returned to
the LCP.

Figure 8b shows the accumulated costs of the two routes over a period of time,
displaying regular growth-and-decline cycles as time progresses. An example of dynamic
cost addition and reduction from time 19 to 23 in the case of Figure 8b is listed in Table 5.
Based on Equation (11), Table 4, and Table 5, the cost reduction is set between 57% and 64%
of the additional cost. In this simulation, the cost reduction-and-addition rate is between
46% and 73% due to the random errors in the ACO system. Through the dynamic cost
adjustment proposed in this study, an ant (passenger) could minimize the cost of moving
from one node to another, enabling the evacuation mission to be carried out more smoothly.
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(b) Accumulated cost

Figure 8. Time-series cost distance and cumulative cost changes for route selection.

Table 5. Cost addition and deduction from time 19 to 23.

Time 19 20 21 22 23

Addition 2.098 1.681 1.993 2.374 1.580
Deduction 1.208 1.085 1.015 1.091 1.165

The test scenario is further complicated by adding more options to the route selection
process, as displayed in Figure 7b. Assume there are two escalators and two stairs at the
connecting node, but the left escalator is going downstairs, so a passenger has three options.
Figure 9 shows the cost comparison of available routes at different timestamps, and the
cumulative costs of all three routes during the simulation are presented in Figure 10. Similar
to the previous example, when the first ant (at t = 0) reaches the node, all three routes
are available, but it selects the one with the lowest cost and enters the escalator. As the
cost distance of the escalator route increases and reaches its FCL (at t = 9), the system
directs the following ants to select the two stairs until the accumulated cost of the escalator
decreases back to its LCP. The cost comparison of the two stair routes (at t = 8 to 13) is
shown in Figure 9b, which the system uses to select which stair to go when the escalator
was “closed” for passengers to enter during that period.

Similarly, the comparison between the escalator and the right stair as well as between
the escalator and the left stair at different timestamps are displayed in Figure 9c,d, respec-
tively. The recorded accumulated costs shown in Figure 10 suggest that after the escalator
is full, the ants are directed to take the right stair route, as this stairway gives the least cost-
distance. The accumulated cost of the right stair reaches its first FCL at t = 15 and is closed
for passenger entry; meanwhile, its accumulated cost begins to decrease until the value
drops to its LCP (at t = 24). As the accumulated cost of the escalator does not decrease to
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its LCP, the left stairway starts to take traffic at t = 16 and reaches its FCL at t = 20. The
accumulated cost continues to decrease until it reaches its LCP at t = 30. Additionally,
the figure also indicates that the accumulated cost of the escalator is reduced to its LCP
at t = 18 and allows the route to be “open” to access again. Although the passenger is
allowed to select the escalator from this timestamp, the developed ACO system makes the
accumulated cost of the left stair reach its FCL at t = 18 to 20 to yield the maximum use of
the FCL.
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(a) t = 0 to 10, all three routes
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(b) t = 8 to 13, two stairways
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(c) t = 14 to 28, escalator vs. right stairway
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(d) t = 27 to 33, escalator vs. left stairway

Figure 9. Cost comparison at different time frames.
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Figure 10. Cumulative costs of three routes.

It is also noticed that the accumulated costs of the escalator and the right stair converge
at t = 27. The system then directs the traffic to the escalator (as it had a lower cost) until
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t = 30, after which the left stair starts to take the traffic again beginning at t = 31.
Compared to Figure 8b, Figure 10 suggests that increasing the number of route selections
results in a more complex growth-and-decline pattern in terms of the accumulated costs.
However, the developed ACO system can guide an ant in selecting the most appropriate
route by considering both the cost distance and the accumulated cost at specific timestamps,
ensuring the effective use of available FCL to operate the system properly.

Although the proposed ACO system dynamically adjusts the FCL and LCP to guide
an ant, the time complexity mainly depends on the number of ants (m) and the number
of paths (p). Take Figure 2 for instance, the number of ants is 30 and the number of paths
is 6. The time complexity to initialize the system is O(m+p) because the fist ant does not
have to track the pheromone density for route selection. During the subsequent search
for the best route, the time complexity may reach O(mp) at worst when there are p paths
having certain amount of accumulated pheromone (running time = O(p)), so an ant spends
more time determining the optimal path. However, this worst case can be mitigated after
the accumulated pheromone on specific paths increases. Therefore, the time complexity
of the proposed system falls between O(m+p) and O(mp). One solution to reduce the
time complexity is using several machines for parallel processing. For example, the time
complexity can be reduced by a factor of 1/m when exploiting m machines, i.e., each ant is
processed individually on a separate machine.

In the proposed ACO system, the cost of determining the best route varies dynamically
according to the attributes and environmental impact factors of the site. The cost distance
and accumulated cost play the role of controlling the in-and-out flow for the real-time solu-
tions. The scenarios imitate the ants’ behavior in the real world by introducing a random
cost into each candidate route, and suboptimal investigations are utilized to represent the
consecutive routing procedures for the passengers. As a result, this simulated best route
searching mechanism offers various aspects to determine routes according to time and cost
variations. The examples presented above demonstrate that the proposed systematic frame-
work enables flexible strategies and effective solutions to deal with emergency evacuation
services in a complex environment.

5. Conclusions

This study utilizes ACO-based spatial analysis integrated with environmental impact
factors derived from 3D indoor building models and attributes for emergency service
decision support applications in a complex environment. In the proposed systematic
spatial analysis approach, detailed 3D indoor models with spatial and non-spatial at-
tributes in OGC/CityGML format and OGC/IndoorGML networks are created from orig-
inal BIM/IFC-styled data. The ACO algorithms are modified to take the environmental
impact parameters into account while searching for the best route in the specified indoor
environment. A dynamic cost–distance computation and accumulation scheme is devel-
oped to determine the optimal route when multiple options are available at a connecting
node. The mechanism allows the ACO system to control the in-and-out flow and achieve a
smooth evacuation strategy. Additionally, it better simulates human behavior compared
to using only swarm intelligence. The examples presented in this paper demonstrate that
integrating detailed 3D indoor models with the modified ACO-based spatial analysis can
help achieve effective emergency evacuation solutions.

In addition to the demonstrated evacuation application, the proposed approach and
spatial analysis framework have great potential for supporting other emergency services
in complex environments, such as search-and-rescue inside a burning building. However,
there are still issues that need to be addressed before the system can be deployed in real-
world operations. For example, in the presented ACO route-search framework, while the
system can dynamically select the best route for each passenger, the decision still needs
to be enforced or at least communicated to the passengers. This will require integration
with sophisticated communication and guiding systems. The AR App developed in this
study can be used as a prototype for dispatching (pushing) information to passengers
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for evacuation guidance, but more development, integration, testing and evaluations are
necessary to build a robust system. Additionally, the support for emergency services
could be further enhanced by incorporating dynamic real-time information obtained from
state-of-the-art technologies, such as Internet of Things (IoT) sensors.
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